NMR properties:

Magnetogyric Ratio NMR frequency Natural abundance (NA) Nuclear spin (I) Quadrupole moment (Q) Reference sample
165 Ho 5.65410^7 rad/sT 21.1356MHz 100% 3.5 358fm²
165 Ho
67

History


(Gr. dysprositos, hard to get at) Dysprosium was discovered in 1886 by Lecoq de Boisbaudran, but not isolated. Neither the oxide nor the metal was available in relatively pure form until the development of ion-exchange separation and metallographic reduction techniques by Spedding and associates about 1950. Dysprosium occurs along with other so-called rare-earth or lanthanide elements in a variety of minerals such as xenotime, fergusonite, gadolinite, euxenite, polycrase, and blomstrandine. The most important sources, however, are from monaziate and bastnasite. Dysprosium can be prepared by reduction of the trifluoride with calcium.

Properties


The element has a metallic, bright silver luster. It is relatively stable in air at room temperature, and is readily attacked and dissolved, with the evolution of hydrogen, but dilute and concentrated mineral acids. The metal is soft enough to be cut with a knife and can be machined without sparking if overheating is avoided. Small amounts of impurities can greatly affect its physical properties.

Uses


While dysprosium has not yet found many applications, its thermal neutron absorption cross-section and high melting point suggest metallurgical uses in nuclear control applications and for alloying with special stainless steels. A dysprosium oxide-nickel cermet has found use in cooling nuclear reactor rods. This
cermet absorbs neutrons readily without swelling or contracting under prolonged neutron bombardment. In combination with vanadium and other rare earths, dysprosium has been used in making laser
materials. Dysprosium-cadmium chalcogenides, as sources of infrared radiation, have been used for studying chemical reactions.

Cost


The cost of dysprosium metal has dropped in recent years since the development of ion-exchange and solvent extraction techniques, and the discovery of large ore bodies. The metal costs about $300/kg in purities of 99+%.